A

\
A

P\
/\
/ -

7\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

'\
A \
J=

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTiONs ¢ 0= ROVAL A

or—— SOCIETY

Bloch Wave Degeneracies in Systematic High Energy
Electron Diffraction

B. F. Buxton and M. V. Berry

Phil. Trans. R. Soc. Lond. A 1976 282, 485-525
doi: 10.1098/rsta.1976.0062

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top
right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1976 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;282/1308/485&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/282/1308/485.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

[ 485 ]

BLOCH WAVE DEGENERACIES IN
SYSTEMATIC HIGH ENERGY ELECTRON DIFFRACTION

By B. F. BUXTON anp M. V. BERRY
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL

PN

(Communicated by J. M. Ziman, F.R.S. — Received 15 October 1975)

.

o \

A D
NI CONTENTS PAGE
O : 1. INTRODUCGTION 486
4
25| 5 2. THE ONE DIMENSIONAL EIGENVALUE PROBLEM 487
LT O (a) The one dimensional Bloch waves 488
W . . . ..
Tw (b) The symmetries of the one dimensional Bloch waves at the Bragg positions 490
SZ
%9 3. BLOCH WAVE DEGENERACIES 492
BL‘) L (a) The Bloch waves and their Fourier coefficients near a degeneracy 494
8;’ ° (b) Absorption effects near a degeneracy 498
§'§ (¢) The effect of a degeneracy on the diffracted waves and the Kikuchi pattern 499
o=~
4. SEMICLASSICAL APPROXIMATIONS 501
(a) Anomalous absorption effects 502
(b) The semiclassical formulae for a degeneracy 503
(¢) The variation of critical voltage with temperature 504
(d) The occurrence of critical voltages for symmetric potentials 505
5. CALCULATION OF CRITICAL VOLTAGES 507
(a) Higher order degeneracies 510
y 6. RECONSTRUCTION OF THE POTENTIAL 512
1‘ (a) The reconstruction of simple monotonic potentials 514
:é (b) Reconstruction from a ‘pair’ of critical voltages 519
> E (¢) The (111) potential of silicon 520
8 23] (d) The three dimensional potential Uy(r) 522
)
Eg 7. CONCLUSIONS 522
~ (a) The exact formulation 522
=0 (b) The semiclassical approximations 523
%O (¢) The reconstruction scheme 523
o
0%k APPENDIX 524
25
= E REFERENCGES 524
=
Vol. 282. A 1308. 31 [Published 13 July 1976

]
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to @% 2

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. IINOIY
WWWw.jstor.org


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

486 B.F.BUXTON AND M. V. BERRY

For the systematic diffraction of high energy electrons by a thin crystalline slab, we
study the accidental degeneracies of the Bloch waves excited in the specimen by the
incident beam. It is shown that these Bloch waves are the eigenstates of a one dimen-
sional band structure problem, and this is solved by wave matching methods. For a
symmetric potential, the symmetry properties of the Bloch waves are discussed, and it
is shown how accidental degeneracies of these waves can occur when the reflexion
coefficient for waves incident on one unit cell of the one dimensional periodic potential
vanishes. The form of the band structure and the Bloch waves in the neighbourhood of
a degeneracy are derived by expanding the Kramers function in a Taylor series. It is
then shown analytically how the degeneracy affects the diffracted waves emerging
from the crystalline specimen (in particular, the Kikuchi pattern). To understand
these effects fully, W.K.B. approximations for the Bloch waves are used to derive the
Bloch wave excitations and the absorption coefficients. However, to predict the
degeneracies themselves, it is shown that a different formula for the reflexion coefficient,
due to Landauer, must be used. This formula shows how the critical voltage at which the
Bloch waves degenerate depends on the form of the potential, and allows quick,
accurate, computations of the critical voltages to be made. Also, a new higher order
degeneracy is predicted for some of the systematic potentials of cadmium, lead and
gold. Finally, to infer the potential in real space from measurements of critical voltages
and several other quantities, we suggest an inversion scheme based on the Landauer
formula for the reflexion coefficient. To a close approximation this potential is propor-
tional to V2 of the crystal charge density.

1. INTRODUCTION

A few years ago, Nagata & Fukuhara (1967) found that, in the (222) dark field image of a bent
wedge-shaped aluminium specimen, the intensity of the second order (222) line became a mini-
mum at a certain ‘critical’ incident electron accelerating voltage. They immediately recognized
that this effect was due to the accidental degeneracy of two of the Bloch waves excited in the
crystal and predicted that the phenomenon should occur quite often under systematic diffraction
conditions. A little later (Watanabe, Uyeda & Fukuhara 1968; Watanabe, Uyeda & Kogiso
1968), it was discovered that at the same ‘critical voltage’, the second order Kikuchi line
vanished and that the central, displaced Kikuchi line reversed its sense of asymmetry. Although
these critical voltage effects have frequently been used since then to measure atomic scattering
factors and other properties of the crystalline specimen (see, for example, Lally, Humphreys,
Metherell & Fisher 1972; Thomas, Shirley, Lally & Fisher 1973), a study of all the possible
degeneracies which may occur at the Bragg positions under systematic diffraction conditions
has not previously been published.

We study these degeneracies by relating the diffraction problem to a one dimensional band
structure (Berry 1971) and solve the latter in real space by wave matching methods. We also
introduce a number of analytic semiclassical approximations which enable us to predict which
Bloch waves can degenerate and how the degeneracy affects the diffracted waves emerging from
the crystalline specimen. Moreover, the simplicity and accuracy of these approximations enable
us to devise an inversion technique for inferring the potential in real space directly from critical
voltage and critical angle measurements (Berry, Buxton & Ozorio de Almeida 1973; Buxton &
Berry 1973). By combining these reconstructed one dimensional potentials, a three dimensional
potential is obtained. Dederichs (1972) showed that this is closely proportional to V2 of the
thermally averaged crystal charge density.

In §2 we introduce the one dimensional band structure problem and discuss the symmetry
properties of the Bloch eigenstates for a symmetric potential. Degeneracies of these Bloch waves
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BLOCH WAVE DEGENERACIES 487

at the Bragg positions are associated with resonances in the transmission of waves through the
potential barrier formed from a single unit cell of the periodic potential, and it is shown how the
parities of the non-degenerate Bloch waves depend on the form of the transmission and reflexion
coefficients. In §3 we derive the form of the band structure, of the Bloch waves and of their
Fourier coeflicients,in the neighbourhood of a degeneracy and show how this affects the diffracted
waves and the Kikuchi pattern. The semiclassical approximations are used in § 4 to discuss these
effects further and to predict qualitatively which Bloch waves can degenerate for a given potential,
and at what voltage. In § 5, we show that the same formulae can be used to compute critical
voltages very accurately, and to follow the behaviour of critical voltages as the temperature of
the specimen is varied. A new type of ‘higher-order’ degeneracy, at which the parities of the
degenerate waves are not interchanged, is discovered and explained. This quantitative success of
the semiclassical approximations means that we can devise an approximate inversion technique
to obtain the potential from critical voltage and critical angle measurements, and thisis presented
in § 6. We show also that when combined with information relating to extinction distances this
technique can be made quite precise.

2. THE ONE DIMENSIONAL EIGENVALUE PROBLEM

Neglecting spin effects (Fujiwara 1961, 1962), we use the relativistic Schrédinger equation
2mV(r
[V2+k3— ———f;;—)];&(r) =0 (2.1)
to describe the elastic scattering by a crystal of fast electrons with rest mass m,. V(r) is the periodic
potential energy function of an electron in the crystal and £, is the wavenumber 2n/A, given by

ko = (moc[f)/(y2—1), y =m|my = 1+ E[myc?, (2.2)

where 7 is the relativistic increase in mass of the electrons which have been accelerated through
a potential of £ (kV). We suppose that the incident electron beam (regarded as a plane wave
elko-r) is nearly parallel to the z axis and impinges on a thin slab of crystal, so oriented that only
one row of reciprocal lattice points lies near the Ewald sphere. It has been shown (Berry 1971)
that under these circumstances, if zis normal to the surfaces of our slab of crystal, we may replace
V(r) by V (x), which isits average over a plane normal to a reciprocal lattice row; this row is taken
as the x axis and is assumed to lie in a plane parallel to the surfaces of the slab. In this case of
systematic diffraction, V (x), which has a period a (say), is given by the Fourier series:

7(x) = Ve, (2.3)
¢
where G = 2nn/a, and n is an integer.
We solve (2.1) by expanding y(r) as a sum of Bloch waves which have constant total energy
but slightly differing kinetic energies. Writing U(x) for 2mV (x)/#2, replacing V(r) by V() and
substituting the expansion

Vi) = BB | (24)
/ \/d 7 J
in (2.1), we find that the 7;(x) are eigenfunctions of a one dimensional Schrédinger equation:
[—d?/ds®+ U(x)] 7;(x) = s;7;(x), (2.5)
where K3 —kP® = ;. (2.6)

31-2
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488 B.F.BUXTON AND M.V.BERRY

Since the £ differ only slightly from 42 and backwards travelling waves may be neglected for
the energy range of interest (£ 2 40kV), we can write

KD % ko —s5;/2ke. (2.7)

The details have been given by Berry (1971), who shows that matching the waves inside the
crystal to the incident plane wave e'*o-* at the top surface of the slab at z = 0 determines the
wavenumber K, of the one dimensional Bloch waves 7;(x), and their excitation amplitudes 5§
K, s just the component of k, along the x axis and is therefore a measure of the tilt of the incident
beam along the systematic row. Moreover, if the 7, (x) (where we now write the K, dependence
explicitly) are normalized over a unit cell a, the excitation amplitude of the jth Bloch wave is, as
anticipated above, the complex conjugate of the zero order Fourier coefficient of the Bloch wave.
The general coefficients 4 are defined by

. 1 [ta .
) =3[ i) e (2.8)
NaJ —%a

Berry (1971) has also written the wavefunction (r) as a sum over diffracted waves
Ay(Ky 2) elEo+@ @ pikos

and shown that Ag(Ky, 2) = 3 b0 bP e 15412k, (2.9)
7

(a) The one dimensional Bloch waves

Usually, in the ‘many-beam’ formulation of high energy electron diffraction (see, for example,
Hirsch et al. 1965), the one dimensional band structure problem (2.5) is solved by expanding the
potential and the Bloch waves 7,z (%) in Fourier series, a process which leads to the usual
algebraic eigenvalue problem

[s;— (Ko+G) 09 - X Ug_¢ bE =0, (2.10)
&

where Uy is 2mV,[#?. However, it is also well known (Kramers 1935; Kohn 1959; Jones 1960;
Scharff 1969) that (2.5) can be solved by wave matching methods. For a symmetric potential,
U(x) = U(—x) (we choose the origin of x to be at one of the highest maxima of U(x) and take
U(0) as zero), we may express 7,z (%) in terms of real even and odd functions 7¢(x) and 7,(x)
respectively, which are themselves solutions of (2.5) for a given s. Writing

Tixy (%) = A;(Ko) 7e(%) +1B;(K,) 7o (%), (2.11)

the energy bands s;(K,) are determined from

_ _ TeTo+ToT,
cos (Koa) = p(s,7) = TeTl =TT loma’ (2.12)
and the coefficients 4,(K,), B;(K,) from
4 _10(39) g~ _Te34) o
B, = ro(1a) © (Ho?) = ~r3q) 0 (o) (2.13)

We have stressed the dependence of z on the relativistic factor v, because as the incident beam
accelerating voltage is changed, the potential U(x) = yU,(x) (say) becomes deeper and the nature
of the solutions changes.

Alternatively, these even and odd functions can be expressed in terms of travelling waves
71,(x) and 7R (x) incident from the left and right on one cell of the potential as shown in figure 1.
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BLOCH WAVE DEGENERACIES 489

For a symmetric potential barrier we may write the transmission and reflexion coefficients in the

form ) )
T=|T|e¥, R=i|R|eC+rm, (2.14)

in the region where 4/[s— U(}a)], the wavenumber £ at the edge of the unit cell, is real (see, for
example, Messiah 1962, vol. 1). The significance of the integer p will be discussed in § 2 (5). It
is then fairly easy to show (Berry 1971) that

_cos (Ba+8) _cos[D(s,y)] .

pu(s,y) = | TI = | TI (2.15)
ifr AU )
7L (%) ¢ o I — Telfx
+RL ¢ -— I

TR (¥) { Te 'f d————l
|
|

t
—la

I

Ficure 1. Waves incident from the left and right and transmitted and reflected by the potential in a unit cell.
For a symmetric potential barrier there is no distinction between left and right and there is only one reflexion
coefficient, R.

It is obvious from (2.12) that s;(K,) is periodic with period 27n/a, and it follows from (2.8),
(2.11) and (2.13) that for any wavenumber A which is an integral multiple of 2r/a we can write

Tjkyrir(¥) orr) = 4Kt H) _ Bi(Ko+H) _ b4 n (Ko + H),

Tix,(%) =%p 4Ky~ TB(KY T WK,y (2.16)

if we make the convenient choice of 4; and B, real for a symmetric potential, the phase factor
aP(H)isjust ( + 1). Thisis the periodicity relation (Metherell & Fisher 1969). Similarly, 5;(K,) is
the same as s;( — K,), and :

Ti_k, (%) y _ A;(=Ky) _ By(-K,) _ b9%(—K,)
7k, (%) =af = A;(K,) - B,(K,) b%f)(Ko) > (2.17)

where o) is again ( + 1); this relation expresses time reversal invariance. Finally, it is well known
that at the Bragg positions where K, = K = mn/a (Jones 1960),

Bro(3a) =0 and Ari(}a) =0 (2.18)
if m is even (even Bragg position), whereas if m is odd (odd Bragg position),

Ate(3a) = 0 and Br,(3a) = 0. (2.19)
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490 B.F.BUXTON AND M. V.BERRY

Thus at the Bragg positions the Bloch waves have a definite symmetry, unless by chance two are
degenerate. Even if one of these accidental degeneracies occurs, we can still choose the relevant
7T;x,(*) to be one even and one odd Bloch wave, so that at K = mn/a it is easily shown that

— )L _ b(,ﬂ;o(%mGo)

= WG = 57 (G
where G, = 2n/a and € (3mG,) is +1 if 7;3,,6,(%) is an even function and —1 if it is odd. It
should be noted, however, that a shift of the origin of the unit cell by 1a changes ¢/'(3mG,) to
€9 (4mGy) e™™, so that the symmetries of the Bloch waves at the odd Bragg position are all
changed. Also, fixing K, as §mG, and Has —mG,, (2.16) and (2.17) may be compared and (2.20)
used to derive the following relation between our symmetry properties:

aP(—mGy) = af e’ (3mG,) (2.21)

T; 4mGy (x )

e (2.20)

(this holds because either 4;(3mG,) or B;(3mG,) is always zero). Finally, the choice of
af) = ed(0) (2.22)

guarantees that all of the 4;, B; and b§) are continuous and smooth functions of K.

(b) The symmetries of the one dimensional Bloch waves at the Bragg positions

By considering the transmission and reflexion coeflicients introduced earlier we can determine
quite simply the order of the symmetries of the Bloch waves for increasing s;, provided s exceeds
U(%a). If the functions are suitably normalized, we can arrange matters so that

Te = §(T1,+7r),

1 (2.23)
To = 5 (T, —TR)-

For instance, at an even Bragg position, if the Bloch wave is to have even parity we see from
(2.18) that 7.(}a) is zero, from which we can show, using (2.14) and (2.23) that

|R| = — (sin @[cosmp), (2.24)
while if the Bloch wave is to be of odd parity
|R| = + (sin @[cos mp). (2.25)

At an odd Bragg position the situation is similar; we obtain equations (2.24) and (2.25) again,
except that the former applies to an odd Bloch wave and the latter to an even Bloch wave.

Now what is the integer p? For s > U(}a), T(s) is never zero or infinite for the finite potential
barriers of interest here and we may assume that both |7'(s)| and &(s) are smoothly varying
functions of s. For s > 0, | 7'(s)| can be unity as shown in figure 2 at transmission resonances (see,
for example, Messiah (1962), vol. 1), so that |R(s)| can be zero. If such a zero of R is of order 7,
a Taylor expansion of R(s) about the zero shows that arg (R) changes abruptly by rx as we pass
through the zero. Elsewhere the phase of R will be smoothly varying in accordance with the &(s)
part of (2.14). For s only a little greater than U(%a) let us assume that the value of p is ¢’; then as
we increase s the phase of R varies smoothly with s until we pass a transmission resonance where
the phase suddenly increases by rm and p becomes ¢’ +r. Thus, if ¢ is the number of zeros of R(s")
for U(a) < s’ < s, p(s) is ¢’ +¢. Since the eigenvalues s; are the solutions of

| T(s)| = % cos (D(s)) (2.26)
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BLOCH WAVE DEGENERACIES 491

at even (+) and odd (—) Bragg positions, a knowledge of the symmetry of one state with
5, > U(}a), together with the positions of the zeros of R(s), will determine the symmetries of all
the states with s; > U(}a) as shown in figure 2.

The important point is that the symmetry of a state with s; > 0 depends on the relative positions
of the peaks of cos (@(s)) and | T'(s)| (Steeds & Enfield 1971). If a transmission resonance and
a peak of cos (®(s)) coincide, our arguments above tell us nothing about the symmetries of the
two degenerate states (p(s) cannot be assigned), but as the peak of cos (@(s)) moves through a
resonance the symmetries of the states » and z + 1 will interchange as shown in figure 3. As we
shall see in the next section, simply by varying the accelerating voltage of the incident electrons
we can alter the relative positions of these curves, because of the dependence of U(x) on the
relativistic factor 7.

1 _\4’ o

-1

Ficure 2. A sketch of cos (D(s)) ( ), | T(s)| (—+—) and sin (D(s))/cos (rp) (-=---- ) as functions of s. The letters
E and O indicate the position of the eigenvalues at an even Bragg orientation and the symmetry of the corre-
sponding Bloch wave, E for even, O for odd. The lowest state has been taken as of even parity, so ¢’ is unity
and p = 1 below the first resonance R,, above which p = 2, etc.

[T(s)1, cos (P (s) 4}
T | U _
P - Py S~ - ~ o e ~
7 P |
|
| | | l ‘
I |l | P
L l | |
0 Sn Sn+1 S O S,,,S,,+1 S 0 Sn Sn+1 S
E O O E
—_t e — —_— ) —— e e e L
-1 -1 -1
(O] (i) (i)
Y <VYec 7=Ye Y=Y

Ficure 3. The sketches show the peak in cos (PD(s)) ( ), passing through a transmission resonance of | T(s)|
(C ), so that the symmetries of states # and n+1 (say) are interchanged. The argument summarized in this
figure was suggested to us by Dr J. W. Steeds.

Ifit is possible to represent the symmetric ‘scattering potential’ as a single barrier, so that the
lowest value of the potential is U(}a) asin figure 1, it is easy to go a little further. At an even Bragg
position where the Bloch waves have the same sign in corresponding regions in each cell, inspec-
tion of the differential equation (2.5) leads us to expect that there will be an eigenstate 7, which
has no nodes. All other eigenstates 7 must have nodes, so they are orthogonal to 7; and it is then
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492 B.F.BUXTON AND M. V.BERRY

easy to apply the Wronksian theorem (see, for example, Messiah (1962), vol. 1) between con-
secutive zeros of 7 and show that s, is less than the eigenenergy s of 7. Moreover, since 7, has no
zeros it must be an even function and p(s,) must be unity. At an odd Bragg position, the wave
function changes sign from cell to cell and all Bloch waves must have nodes. There is therefore
no quick way of determining the symmetry of the lowest state at an odd Bragg position: we must
have a knowledge of the first solution of (2.26) and the first zero of R(s). Comparison of equations
(2.24), (2.25) and (2.26) shows that in this simple but important case the symmetry of the jth
Bloch wave at the mth Bragg position is given by

eP(mmja) = (— 1)i+mra+l (2.27)

where ¢ is the number of zeros of R(s’) for s’ < s;, and the lowest state is labelled 1.

3. BLocH WAVE DEGENERACIES

In the previous sections, we showed how the eigenvalues s; (and hence the dispersion surface
k) and the Bloch waves 7, () could be determined. We shall now use the function (s, ) which
was defined in (2.12), to investigate the neighbourhood of an accidental degeneracy of the Bloch
waves. The form of (s, y) as a function of s was determined by Kramers (1935) to be as shown
in figure 4. In particular, he showed that, at the turning points u;, where 0u/0s ( = u,) vanishes,
4% — 1 is positive semi-definite. Using the same methods we choose the normalization of the even
and odd basis functions 7e(x) and 7o(x) so that 7¢(0) = 7,(0) = 1. The Wronskian of these
functions is then unity for all x, s and .

u(s)

#

FIGURE 4. A sketch of the form of u(s, ) as a function of s. The turning point p; separates the bands labelled by
s; and s;,,, since the lowest band is labelled as s; and the rest labelled in order of increasing ;.

Differentiating the Schrédinger equation (2.5), and also the boundary conditions on 7e and 7o
at x = 0, with respect to s, it is simple to use the method of variation of constants to evaluate the
partial derivatives 07e(x)/0s and 07o(x)/3s. We then find that

a/t/as = U = 2[TeTé100~ToT:)Iee], (3.1)
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BLOCH WAVE DEGENERACIES 493

where all the functions are to be evaluated at }a; the integrals Jee, oo are given by:

}a
Tee Ef dx72(x),
0

Ja (3.2)
I = f dx72(x),
0
and the prime denotes differentiation with respect to x.
When g, = 0, pr—1= 4[Te7'é]2£ = 4[7’07(')]2@, (3.3)
IOO Iee

and this, together with the fact that the Wronskian of 7. and 7, is unity, makes it obvious from the
band structure equation (2.12) that degeneracies of the Bloch waves can only occur at the Bragg
orientations. Assuming that a particular choice of the relativistic factor y will ensure that #2 is
unity, reference to the labelling scheme of figure 3 and equation (2.12) shows that Bloch waves
n and n+ 1 can only degenerate at some s, ™ when

p(st, y™) = cosnm,

/‘s(s((:n): Yén)) =0, (3.4)
Ky=KP = (n+2M)nfa

(M is any integer). These conditions impose two constraints on x and ,, so that if only s is varied
the degeneracy is accidental. In electron microscopy, v is also varied by altering the accelerating
energy of the incident electrons, but over a limited range, so that only a few of these degeneracies
can be obtained; they are known as critical voltage effects.
By differentiating (2.5) with respect to y rather than s, it can be found by a similar analysis

that at (s, y%) we must have

Mg = fy = 0,

Mg = — 4/1’]83]00,

3.5
MRyy = — 4,“Uee a)o, ( )
Mgy = 2,“[100 Use + Iee Uoo],
where as usual all the functions are evaluated at 14 and the new integrals are defined by
fa -
Uee = [ dar3(o) Oy,
0
(3.6)

$a —
Uso = j dxr3(x) Ty ()
0

(remember that the potential U(x) has been written as yU,(x)). In fact u(s, y) has a saddle point,
or some higher stationary point, since at (s, y®) the discriminant is

A = pigy — Psgttyy = 412 [Loo Uee — Lee Uno]® > 0. (3.7)

We can now solve the band structure equation (2.12) near a degeneracy. For simplicity, we
shall assume that the degeneracy is at an even Bragg orientation and that K is near zero. (A simi-
lar analysis holds for a degeneracy at an odd Bragg position, and the results obtained near
K, = 0 can always be related to the equivalent even Bragg positions using (2.16) and (2.17).)
The band structure s(K) is the (two-branched) hyperbola

(%Koa)z + (3— Sc) (')’ - ')’c) (Ioo Uee + Ice [Joo) —(s— 30)2Iee100 = ('}’ —7¢)? Use Uso. (3.8)

32 Vol. 282. A.
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This becomes a degenerate line pair, so that the bands cross but do not touch, at the critical
value y = vy, (we shall occasionally denote Y and s by vy, and s).

At K, = 0, denoting the branches of (3.8) which correspond to the even and odd Bloch waves
as se and s, respectively, we can show that the separation of the two bands represented by (3.8)
is given by

$2(0) =50(0) _ Uee_ Uoo (3.9)

Y—"7e Lee Ioo

It is now clear that, unless the right hand side of (3.9) vanishes at y = y. (in which case 4 = 0
and x has a higher order stationary point), the symmetries of the Bloch waves 7, n+ 1 which
degenerate at (s,, yc) must interchange as we pass through y.. Comparison with §2 () thus
shows that a higher order stationary point of 4 corresponds to a zero of the reflexion coefficient R
which is of higher order than unity. Finally, the right hand side of (3.9) is just the difference in
the potential energies of the even and odd Bloch waves in the one dimensional potential Uj(x),
so that the ordering of the symmetries of the Bloch waves above or below a known degeneracy
tells us the sign of the relative potential energies of the waves in the projected potential.

(a) The Bloch waves and their Fourier coefficients near a degeneracy
In the last section, we indicated how the derivatives 07¢/0s, 07¢[0y, etc., could be evaluated,
and we may now expand the basis functions in Taylor series about (sc, y¢). Again we restrict our
attention to a degeneracy at an even Bragg position, and use the equation for the branch of the
band structure which has an odd solution at K, = 0; we find that, to lowest order,

Te(%a) = Te(%a 5 e, ')/c) s

ro(3a) = Te39) S};%) A%[ /( - 1%5) _ 1]’ (3.10)

where the functions and integrals on the right are evaluated at s¢, v, and we have chosen the

branch
A* = 2[Iee Uoo’—Ioo Uee]~ (3.11)

It is now tedious but straightforward, to use (3.10) in (2.13), and the normalization of the Bloch
waves, to determine the coefficients 4o(K,) and Bo(K,) in the expansion (2.11) of the Bloch wave
Tox,(*) for this ‘odd branch’ of the band structure (labelled henceforth by o). The general
formulae are complicated, but two limits are relatively simple and illuminating.

First, let us suppose that 16(3K,a)2 Iee Ioo < (Y —7yc)%4, which can always be achieved for small
enough K, provided that y = y. and 4 does not vanish. It is found that

L 20e(3K,a)
Ao(Ro) & £ = Y AT (2T’

Bo(Ky) % % (1-20Kea 2220 ) [ (oL,

(3.12)

where the + signs are to be taken together. We see that near vy, this Bloch wave which is odd at
K, = 0, rapidly acquires an even component as K, is increased from zero. We shall see later that
this has a pronounced effect on the Fourier coefficients b (K,) of this Bloch wave.
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The second limit, when 16(3K,a)2 leeIoo > (Y —yc)%4, is relevant for larger tilts away from the
exact Bragg position. We find that
1
4o(Ky) ~ PN (Kod¥(y —e)),

1
Bo(K,) ~ £ 57100’

(3.13)

where sgn (x) is +1if ¥ > 0 and —1ifx < 0. These formulae show that the Bloch wave 7og, (x)
looks like a travelling wave in this region, rather than a standing wave as at K, = 0. Similar
results are also obtained for the coefficients 4e(K,) and Be(K,) of the Bloch wave 7eg (¥) corre-
sponding to the even branch of the band structure (3.8). (In fact, they are the same as (3.12) and
(3.13) with 4e and Beinstead of B, and 4, respectively, o and e interchanged, and in the formulae
for Be the + changedto ¥ .) Finally, we note that the function sgn (x) above has not been defined
for x = 0. This is because formulae (3.13) do not apply if K,4%(y — ) is zero; either (3.12) must
be used, or if y = 7y, we solve (3.8) afresh and find from (2.12) that for small | Ky| = 0

A Ioo) . (3K,a)
=+ [|F) if s—sc= 201, 3.14
B —A/ (Iee BT E oo kee) (314
Al/B A‘(B
0 > 0 K,
f (E) (o)
(i) r<»,
A
0 - 0 K,
(li) Y=,
| A
> > K,
0 - 0 o
0 E
e (iii) ¥>7 \ (=)
lower band upper band

Ficure 5. The ratio of the coefficients 4[B is sketched as a function of y and K in the region of a degeneracy.
The symmetries of the Bloch waves are as indicated by the letters E (for even) and O (for odd), assuming
that A¥ < 0.

At Ky = 0 4 and B are of course indeterminate. The variation of the ratio 4/B predicted by
equations (3.12)—(8.14) is sketched in figure 5, assuming that 4% < 0. The changes in the parities
depicted there are consistent with the predictions of equation (3.9). If 4% were zero at (sc, Ye),
then we should have to expand x(s, ), etc., to higher order. However, equation (3.9) shows that
in this case the minimum separation of the bands at K; = 0 must vary at least as (y —vc)?2, and
our previous arguments about the phase of the reflexion coefficient show that it is possible to have

32-2
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a degeneracy without an interchange of symmetry. Such a higher order degeneracy will occur
only by chance (‘accidentally’) if we vary just ¥, but we can also vary the shape of U(x) by
changing the temperature and we shall see in § 5 that for some materials this is enough to produce
such an effect.

We can of course easily substitute the expressions for the 4, B coeflicients above in the definition
of the Fourier coefficients of the Bloch waves (2.8). Defining new integrals

3a
Cle = f dx 7 (x) cos G,
0

1o (3.15)
Szo = f dx x7e() sin G,
0
and similarly for S and C%°, we find, in the first limit above, that
1 Ieel, 2(1K,a)
V(K = + ————{(1—-2(1K Zﬂi’—-)slf’ —2 0T Cle},
0% = & g (!~ 5 5) S0+ 2 i e (3.16)
1 e, 2(3K,a) '
BO(K =+-__{(1_2 Kya)? —Leedoo ) o 2Rea) g SlO},
(r( 0) _\/(%alee) (% Oa) (,y_,yc)zA G (Y“YC)A% eeVq
by
Ky=—m/2a.
15 12 8 4

%),

2n/a

A
~3
T

0.3 \
0.1+ \
Ky=—r1/2a N Ky=1,2a
1 1 1 " 1 \ ' ) 7
S
15 12 8 4 0 4 8~ 12 15

o ~

Ficure 6. For Au (200) at 293 K, Bloch wave (2) is even for £ < 101 kV, and Bloch wave (3) is odd. The Fourier
coefficients 5% and b}, of Bloch wave (2) are shown at 61 kV (------ ) and 100 kV ( ). The orientation K|,
is given by aKy[2n = *0.0028084 (e®3/—1), so that the very rapid changes of b2 (K,) near K, = 0 can be

seen. Even for I = 5, K, = 0.009778 X 2n[a, showing that the K scale is very nonlinear.
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while in the second limit we have
S10+ LK a Caco Cle___ LK a Sace
#(k) = i{ - \/((20]:0)) " e (K"A%W"""))( ) «/((ZI;)) G)}
(3.17)
Cle__ 1K a Sze . Slo_l_ 1K a) C%o

(Notice that S§¢ and $3° vanish identically.) All the qualitative features of equations (3.16) and
(3.17) are shown by the calculated Fourier coefficients of Bloch waves 2 and 3 for gold (200)

systematics at 293 K, which are displayed in figures 6 and
obtained directly by solving equations (2.10), truncated to
note the very rapid variation of the Fourier coefficients for y
(3.16).

bi, 0)

7. These Fourier coefficients were
a 17 x 17 matrix. In particular, we
near to Y, as predicted by equation

—0.24

~0.4 -

Ky=—m/2a

Ficure 7. The Fourier coeflicients b5 and b5y, are shown for 61 kV (

Ky=n2u

) and 100 kV (-——) (the orientation

K, is labelled in terms of the quantity I defined below figure 6).
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(b) Absorption effects near a degeneracy

So far, we have regarded V(r) and U(x) as real local potential energy functions. But this is not
sufficient for a description of the elastic scattering of fast electrons by a crystal; Yoshioka (1957)
showed that we must allow for some of the effects of the inelastic processes which take place in the
crystal, in particular the reduction of the intensity of the elastically scattered waves. We can do
this by adding to U(x) a small imaginary potential iU(x), so that we have a complex ‘optical
potential® (optical potentials in diffraction theories are discussed in the review of Dederichs
(1972)). Conventionally (Hirsch et al. 1965; Howie 1969), the small imaginary part of the
potential, iUZ(x), is included only by a first order non-degenerate perturbation calculation, so
that the Bloch waves 7z, (x) are unchanged to lowest order, but a small imaginary part is added
to the eigenvalues s;(K,). As pointed out by Sprague & Wilkins (1970) the form of the Bloch waves
can be radically affected by this small perturbation, and we must perform a degenerate perturba-
tion calculation near a critical voltage (Sheinin & Gann 19%3). This is easily done for two Bloch
waves T,z (¥) and 7,z () which have unperturbed eigenvalues s, (K,) and s,,(K,) respectively
(5,(0) and s,.(0) become equal at y = y.). We find that the perturbed eigenvalues are

Sy = %{sn + S +1(Ufm + Urlzn') + \/[(sn’ _sn)z - (Uén - Urlz'n')z —4 | U{Ln'|2
+ 2i(5n _Sn’) (Ufm - Ugv/n’)]}, (3' 18)

where UL, is a matrix element of UZ(x) between the states Tor, (%) and T,z (¥).
Obviously, a long way from the Bragg orientation s,, and s,,- are quite different and (3.18) may
be expanded to give the usual non-degenerate result: for example, if 5,,. > s,,,

Sy =Sy +iUL + ... (3.19)

However, UZ(x) is a symmetric potential if the real part U(x) of the potential is symmetric. Thus,
very near a Bragg orientation, when the Bloch waves are to a good approximation purely even
or odd functions of x (as indicated by equations (3.12) and in the sketches of figure 5), |U%,,| is
very small, and we find that (3.18) again reduces to (3.19). As shown by the calculations of
Andrew & Sheinin (1974), the range of orientations for which the usual non-degenerate result
(8.19) is valid is reduced as we approach ye, until when y = 7y (3.19) is only correct for K, exactly
equal to zero, when the degenerate Bloch waves may be chosen as even and odd. Our analytic
expressions (3.12)—(3.14) also predict this behaviour.

Since UZ(x) is already diagonal with respect to the even or odd Bloch waves at a Bragg position,
we can easily calculate to higher orders of perturbation theory. For instance, the second order
contribution to se, namely

@ = —

(3.20)

is real, but extremely small because, as shown in figure 2, s is widely separated from all the other
states of even parity. We shall see in the next section that it is most useful to define the critical
voltage by the equality of the real parts of two of the eigenvalues s; (the Bloch waves, labelled in
order of increasing Res;, then interchange their symmetries at the critical voltage), so that, if
these second order contributions from U!(x) are included, the critical voltage is slightly shifted
(Lally et al. 1972). We shall ignore these very small contributions, and also very small corrections
to the real part of the potential itself which are also due to inelastic processes (Yoshioka 1957).
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(¢) The effect of a degeneracy on the diffracted waves and the Kikuchi pattern

We have just seen that, at the Bragg position, we may use (2.9) for the diffracted wave ampli-
tudes Agy(Ky, 2), provided absorption effects are included by adding a small imaginary part to
the ;. In the bright field (G = 0) case, we have (cf. equation (2.9))

Ao(KB,2) = 3 (B9 exp{—is;z/2ke+ (B9)2 exp { —isez|2ke} + ()2 exp { —isyz/2ke}s (3.21)

j#e,0

where the contribution from the even and odd Bloch waves has been shown explicitly. At the
critical voltage, Rese = Reso, so that the even and odd waves interfere constructively, and we
should expect to see (besides the obvious increase of the extinction distance to infinity) a maximum
in the bright field intensity |4o(KE, z)|2. The visibility of this maximum at the Bragg position will
depend on the relative magnitudes of the 5§, the relative magnitudes of the Ims; and also on the
background intensity due to inelastic scattering. In § 4, we shall show that we may simultaneously
choose |4§"| and |5§| to be comparably large by a choice of K&, and that Im se ~ Im s,. More-
over, we shall show how the contributions from all the other Bloch waves may often be made
small by the use of a thick crystal, so that this maximum intensity can be observed (Lally et al.
1972).

More dramatically, if we choose G to be — 2K§, we can use the symmetry relation (2.20) to
show that

A_ox3(K§,2) = T (00)2 e (KT) exp { —is;z/2ko}
j#e, 0
’ + (B) 2exp { —isez/2ke} — (B9)2 exp{ —isoz[2k), (3.22)

so that the even and odd Bloch waves interfere destructively, and at y = y. we expect the intensity
|A_yx3(KF, 2)|? to be a minimum. If e and o stand for Bloch waves (2) and (3) and if K} = 2n/a,
this is the ‘disappearance of the second order line’, often used to observe the degeneracy from
bend contours (Nagata & Fukuhara 1967; Lally et al. 1972; Rocher & Jouffrey 1972).

However, most observations of the Bloch wave degeneracy are made from the Kikuchi pattern
(Watanabe, Uyeda & Kogiso 1968; Watanabe, Uyeda & Fukuhara 1968; Thomas et al. 1973).
According to the phenomenological theory of Thomas (1972), we may write the intensity in a
direction K in the Kikuchi pattern from a crystal of thickness z as:

1(K,2) = 3 |46(K =G, 2)|* # (| Ky~ K +GI), (3.23)

where K indicates the direction of the incident electron beam, and & is a function which is
fitted to the spread of the diffuse scatter about the incident direction. Since # decreases rapidly
for large argument, Thomas approximates it by exp{—a|K,— K+ G|*}. The validity of this
expression, which was shown by Thomas to give a good description of the Kikuchi pattern for
crystals of intermediate thicknesses, has been discussed by Heier (1973). Immediately, in the
light of the last paragraph we can understand the disappearance of the second order Kikuchi line,
since for K, = 2n/a and K = —2n/a, the term |4_y,(2n/a, z)|2 dominates in the sum in (3.23).

Thomas (1972), however, points out that the reversal in the sense of asymmetry of the displaced
Kikuchi line at K = 0 is probably a more sensitive indicator of the critical voltage. We can
demonstrate analytically how this change is linked to the critical voltage. For K, = 2nfa (= G,),
say) and K small, the term |4_g, (G, z) |2 gives the largest contribution to (K, z), so we neglect
the other terms and also ignore in the dominant term all quantities having an oscillating thickness
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dependence (because the Kikuchi pattern is not a sensitive function of thickness). For y # 7,
we eventually find, using the periodicity relation (2.16), that, if s = Im s,

I(K, z) ~ S[6(K) b, (K)]? e F (K), (3.24)

an expression similar to that given by Heier (1972).
If | K| is big enough it is easy to show from (3.17) that

(B9 (K) Bg)(K))? = 02% [(—%—Ka) Cso +sgn (AHK(y —y0)) / (j_) Cole]z

x| S8+ (1Ka) g+ sgm (4K (v -0 [ (32) (Cli - @Ry s | (.29

and that (b (K) 6% (K))? can be written in a similar form with sgn (4}K(y—1,)) replaced by
sgn (43K (y.—7)). The semiclassical expressions to be developed in § 4 will show that these terms
are often the largest contribution to (3.24) and that s! & s (the other terms are in any case slowly
varying over the range of K of interest). Thus, with the assumption that #(K) is also slowly
varying we expect the Kikuchi pattern to be independent of the sign of y — 7y, in this region.

B K) b5 KP4+ (K) b (K)P

\ 0.14-+ / \

\ 0127 \.

15 12
K=—n2a K=n/2a

Ficure 8. Calculated values of [5§(K) 53 (K)12+ [6§ (K) b5 (K)]? for Au (200) at 293 K, at 61 kV ( ) and at
141 kV (------ ) showing the reversal in asymmetry at K = 0. (The orientation X is labelled in terms of the
quantity I defined below figure 6.)
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For small K, we find to first order that:

(B9 (K) BE(K))2 + (B (K) BE(K))® = (20"16)2[(05@)2— (3.26)

alee

4(3Kya) Iee CF é‘z]
(y=—ve)dt |

which, unlike (3.25) does depend on the sign of y — y¢. In particular (3.26) predicts that the slope
at K = 0will changesign accordingasy $ 7e, a conclusion which is borne out by detailed calcula-
tion (figure 8) and explains the observed reversal in asymmetry of this Kikuchi line at the critical
voltage.

4, SEMICLASSICAL APPROXIMATIONS

Itis not hard to use W.K.B. approximations for the transmission coefficient 7"to solve the band
structure equations (2.12) and (2.15) (Berry 1971), and calculations based on these methods are
in excellent agreement with exact ‘many beam’ calculations (Steeds & Enfield 1971; Berry et al.
1973), except near the Bragg positions and for states near the barrier top (s; & 0). This is because
the W.K.B. method only accounts for the waves reflected from the smooth top of a potential
barrier and can never give transmission resonances. However, our scattering potentials have a
discontinuity in curvature at x = + }a as shown in figure 1, and this may give rise to reflected
waves that interfere destructively with those reflected from the top of the barrier so that | T
rises to unity (Berry et al. 1973). These effects are included in a formula for the modulus of the
reflexion coefficient due to Landauer (1951)

a 4 x —
IR| = il f :adxs v gg) exp{2i f “de (5= T)) ” (4.1)
This may be obtained either by replacing the smooth scattering potential by a ‘staircase’ of tiny
discontinuities and including waves reflected only once, or by iterating a pair of coupled integral
equations which are equivalent to the Schrédinger equation (see, for example, Berry & Mount
1972). For the phase @(s,y) defined in equation (2.15) we obtain the usual W.K.B. formula,
which in the ‘above-barrier’ region, i.e. s > 0, where (4.1) is valid, may be written as:

26,7 = [ asile= T, (4.2

Similarly, we obtain W.K.B. expressions for the wave functions, so that we may write,

. cos[ ]0 de(s- U(x’))]  cos (911)
" F-O0T - U@
) (4.3)
o) o] [;6= 00D _ g g
; F-OWF - Ol

where we have introduced the ‘incomplete phase’ ¢(x). These approximations are very useful
in expressions involving integrals of the Bloch waves. For example, by using the standard method
of stationary phase (Erdélyi 1956) as explained by Berry (1971), we may estimate the Fourier

33 Vol. 282. A.
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coeflicients b§ 9 (K§) occurring in (3.21). Without loss of generality, suppose that K§ > 0; then,
retaining only those integrals which include a stationary phase contribution, we find:

ta dx 2

———=cos ($(x) — K§'x)

(66 (K$)]2 =~ [59(KP)]2 %U 0o [s=U (;i)]% _ ] .
0 JIs—TU()]

Hence the excitations of the even and odd Bloch waves will be comparable at a critical voltage
when s = se = 5o = Sc. It now remains to choose K so that these excitations are as largeas possible.

(4.4)

The phase is stationary at the classical turning point x¢, where
KB = J(s—= (o)), (4.5)

so that, assuming — U’(xc) > 0 as is always the case for a simple potential like that shown in
figure 1, the result of the approximate integration is

e~ LOTIT () cos (90 = K s+t (4.6)

o JIs=U()]

The excitation will be largest when this stationary phase formula diverges most strongly, which
happens when . is zero, since U’(0) vanishes by symmetry and the curvature of the potential is
small there. However, U(0) is also zero so that we have, for the most favourable orientation

KB ~ \se, (4.7)

a result which remains valid even if there are several classical turning points in the range [0, $a]
and the potential has a more complicated form than that shown in figure 1. This crude estimate
is shown later (§5 and figure 14) to be quite good in practice.

~ Morcover, even for s < 0, the semiclassical approximations in the classically accessible regions
(s—U(x) > 0) have a form similar to equations (4.3), and equation (4.5) applies to all the even
and all the odd Bloch waves, so that their excitations are only significant if (using (4.7))

U(x®) = s;—se. (4.8)

If K%is defined as the depth of the potential U(x), so that — K2 < U(x) < 0, we see from (4.8) that
all the Bloch waves which contribute significantly to the diffracted wave amplitudes 44 (KB, z)
lie in a region of width K2 below sc (Berry 1971). We shall see in a moment that provided s. is the
smallest positive eigenvalue the anomalous absorption effect can be used to ensure (by using
a thick enough crystal) that only the degenerate Bloch waves contribute to the diffraction. For
the special case n = 2 this was discovered by Lally ¢t al. (1972).

(a) Anomalous absorption effects

The probability density of a bound (i.e. s; < 0) state is large near the classical turning points,
which in turn will be quite close to the projected atomic planes if the state is deeply bound. These
states are therefore strongly inelastically scattered and their contribution to the diffracted waves
emerging from a thick crystal is correspondingly small. Doyle & Berry (1973) found that for
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a simple potential like that sketched in figure 1 the first order non-degenerate perturbation
expression for s could be written as

Ref du UX(x)[|J[s;— U(x)]
Re f dely[s;— T(#)]

a formula which is also valid for more complicated potentials if 5; > 0. They also showed that s]
has its minimum value at 5; = 0, so that Bloch waves with |s;| near zero are least absorbed, and
bound states with large |s;| are strongly absorbed. Thus, if we have a degeneracy at sc, and this
is the smallest positive eigenvalue, and if the bound Bloch waves in our contributing ‘band’
below s¢ do not lie near s; = 0, a thick crystal can be used to ensure that the degenerate waves
make the largest contributions to the diffraction.

Moreover, we see immediately from (4.9) that when se = 5o = e, ¢ is equal to s so that the
degenerate waves make comparable contributions to the diffraction; this gives rise to the effects
discussed in § 3 (¢).

5f = s ; (4.9)

(b) The semiclassical formulae for a degeneracy

In this section, it will be shown how the Landauer formula (4.1) may be used to predict many
features of the critical voltage effect. Using the symmetry of the potential, we see from (4.1) that
for a degeneracy of Bloch waves n and 7+ 1 at (s,?Y.) we must have

f:adxfcf'( x sm: f dx’ J[so— x)]} (4.10)

while it is obvious from figure 2 by counting the eigensolutions of equation (2.26) that the phase @,
given by equation (4.2), must also satisfy

® =2 f ¥ el [se— O(x)] = n. (4.11)

To solve for sc and . we define a ‘scaled’ eigenenergy s, by
YeSp = S, (4.12)

and recall that U(x) may be written as yUy(«) (cf. §2(a)), so that (4.10) and (4.11) become the

relativistically scaled equations -

Jye = — o —— C (4.18)
2 [ anglss - i)

Ii
e

u , nm | da'y[so—
and f: dx Jol=8) f (4.14)

~U (x) f dx’y/[$o—

These last two equations are extremely useful, both computationally (§5) and qualitatively.
As an example, let us suppose that the potential has the simple form sketched in figure 1 so
that T, (x) is a decreasing function of x in the range [0, }a]. If nis unity, then (4.14) is the integral
of a positive semidefinite quantity and can only be zero if Uj(x) = 0for all x (which is just the free
electron case). Therefore degeneracies involving Bloch waves (1) and (2) will not occur for this
33-2
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504 B.F.BUXTON AND M. V.BERRY

form of potential. For z = 2, the sine term in (4.14) changes sign once as ¥ varies from 0 to 1a,
dividing the integrand into positive and negative portions. The prefactor Uj(—x)/[so— Uy(*)]
typically has the form shown in figure 9; thus if s, is correctly chosen, the integral can be made to
vanish and a degeneracy will occur. If z = 3, the integrand has a negative portion in the middle
of the range which often does not cancel the positive contributions from the ends for any choice
of sy so that degeneracies of Bloch waves (3) and (4) often do not occur for this type of potential.
For larger values of 7, cancellation seems more likely and we can imagine degeneracies at more
than one value of s, (and therefore at more than one vy.) for a given n. For very large n, however,
both repeated integration of (4.14) by parts (Erdélyi 1956), or an evaluation of the integral by
contour methods (see, for example, Berry & Mount 1972) indicate that the integral behaves
asymptotically as exp{—const x n} and so is non-zero, showing that degeneracies do not then
occur. Therefore, the total number of degeneracies for any smooth potential T(#) is finite. For
the small values of n likely to be encountered in practice, we shall use the qualitative form of
(4.13) and (4.14) to predict which Bloch waves can degenerate and to understand how ¥ varies
with the temperature of the specimen. It is to this latter point that we now turn.

-
8 // N
."\\
/s 7/ Al
— // / \\
// . \\
6 . \
// 7 \
L /// /./ \
FIE S \\\
NS W4l // / \
B0 S ‘
Q| Ve .
- !
v / \
2 e
Yy \
S 2
V
| | | ]
0 0.2 0.4
x[a

F1URE 9. aUg(—)[[sy— Ty()] for Pb (200) systematics for (i) 5, = s& = 8.022; W = 2.450, i.e. 293 K (—);
(i) 5o = 3.022; W = 0.805, i.c. 93 K (—-—); (iii) 5, = s = 1.944; W = 0.805, i.c. 93 K (ccrrms).

(¢) The variation of critical voltage with temperature

Temperature enters our theory through a Debye~Waller factor exp { — M.} which is included
in each of the Fourier coefficients V; of the potential ¥ (x) and accounts for the smoothing away
by thermal motion of the discontinuities in the slope of 7 (x) arising from the Coulomb singu-
larities in the atomic potentials at the nuclei. In the harmonic approximation M, is written as
W (G[4m)? so that decreasing the temperature decreases W (see for instance the International
Tables for X-ray Crystallography (1965)). The result is that the minima of the potential become
deeper and sharper as shown in figure 10, basically because of the decreasing amplitude of
thermal motion of the atoms. In turn this shifts the peak in the prefactor Uy( —x)/[s, — Ty(x)]
towards ¥ = }a and increases the value of this factor in this region. The peak is also somewhat
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BLOCH WAVE DEGENERACGIES 505

narrower and the value of the factor is decreased in the neighbourhood of ¥ = 0 (figure 9)
because of a flattening of the potential near x = 0.

z —
The effect of decreasing W is only very small as far as the phase integralJ~ dx’y/[so— Up(x")]
0

is concerned, so the value of 5, which gave a degeneracy at 293 K (say) will not give a degeneracy
at 93K (say). To make the integral in (4.14) zero at 93 K it is necessary to reduce s, so that the
contribution from the neighbourhood of x = 0 is increased in comparison to that from the
neighbourhood of x = }a (figure 9). Equation (4.13) shows that y. will therefore be increased.
This is indeed found to happen (see for instance the results given in § 5) for any #in the range 2—-6;
the exception occurs when two degeneracies occur for the same z but slightly differing s, (see § 5),
and it is to a discussion of this case that we now turn.

0
.....8 .
3 -
>
_..16 e
—24]- ]

Ficure 10. (200) systematic potentials of lead at (i) 293 K, W = 2.450 (=--=m- ); (ii) 93 K, W = 0.805 (—+—);
(iii) static lattice W = 0 ( ). For W # 0 the Fourier series (2.3) is rapidly convergent. For W = 0 the
series converges only slowly, and Kummer’s method of summation (Abramowitz & Stegun 1964, p. 16) was
used, with Vg — const[(G2+b) as G — co.

(d) The occurrence of critical voltages for symmetric potentials

We shall now discuss how two degeneracies can occur for a given value of z, and also whether
a given degeneracy can occur for a given symmetric potential (general asymmetric potentials
are dealt with in the appendix). To be concrete let us consider the case of Pb (200) systematics.
At low temperatures W is 0.805, a value similar to the values taken by the Debye~Waller para-
meters of most other metals at room temperature. For n = 3, the factor Uy ( —x)/[s, — U,(%)] is
quite sharply peaked at this temperature (figure 11), and as discussed in §4 (5) there is no
degeneracy. As we increase the temperature, figure 11 shows that the peak broadens, until
suddenly, at W = 1.536, there appears a pair of values of s, which cause the integral to vanish,
and there are two critical voltages for a degeneracy of Bloch waves (3) and (4) which persist at
higher temperatures. We shall see in § 5 that this sudden appearance of two critical voltages is
a higher order degeneracy (§3). Qualitatively, we can say that degeneracies of Bloch waves
(3) and (4) will only occur for potentials of the form shown in figure 1 if the Debye-Waller
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506 B.F. BUXTON AND M. V. BERRY

parameter W is large cnough. Such degencracies arc expected to occur in pairs, approaching,
coalescing and disappearing as the temperature is reduced.

As a final example, let us consider a more complicated form of the potential, for instance the
(111) systematic potential of silicon. This potential is sketched in figure 124 together with the
form of the factor Uy( —x)[[so — Uy(x)] in figure 12 . The (111) plancs of the diamond structure
occur in pairs so that there are two different potential barriers between neighbouring planes of

8 (i)
e SN
L S
<N
(\) 7 K \ \
61— // : - ' \
<N
A D
- VAV S
/ /
= 4 \
TE L V2 AN
Ilt)o ‘o // / 7 \\\
I . / ,// 7 \\ \
o i
A
Y= s \
2 / 7z -
S s \\
- v
L |
/ -~
= | L l l
0 0.2 0.4
xfa
Ficure 11, aUj(—x)[[s,— Uy(x)] for Pb (200) systematics for: (i) W = 0.805, s, = 3.1 (—-—); (ii) W = 1.75,

so = SV = 4.404 (------ s (i) W= 1.75, 50 = s§? = 2.466 (------ )5 (iv) W =245, 5 = sV = 6.638

( ), (v) W = 2,45, 55 = s = 2.235 (—).
U, (x)
—3a —3a ) la  ja
T I x
' |
| |
| (a) |
|
[ |
|
Ty(-2)
s~ Uy (x) |
|
|
(&) ,

|
x
0 1
\./lza

FiGURE 12. (a) A sketch of the (111) systematic potential of silicon. (4) The form of Ug(—x)[[so— Up(x)]. Note
that the minimum of Iy(x) occurs for x just greater than 3af8 (where there is a (111) planc of atoms).


http://rsta.royalsocietypublishing.org/

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

BLOCH WAVE DEGENERACIES 507

atoms. Because of the zero of U,( —x) near x = 3a/8 we can readily understand from the integral
in (4.14) why Bloch waves (2) and (3) do not degenerate for this potential, whereas waves
(3) and (4) do.

5. CALCULATION OF CRITICAL VOLTAGES

It was very easy to solve equations (4.14) and (4.13) by numerical integration on a computer
so that from equation (2.2) a quick estimate of the critical voltage E{® at which Bloch waves n and
n+ 1 degenerate was obtained. The potential Uy(x) and its derivative Uj(x) were obtained by
summing their Fourier series, using the free atom form factors given by Doyle & Turner (1968)
and a mean of the values of the Debye-~Waller parameters W given in the International Tables
for X-ray crystallography to calculate the Fourier coefficients Vy; (see, for example, Howie 1969).
For small values of G/4n (generally G/4n < 6 A-1) the form factors were obtained by interpolation
from the tables given by Doyle & Turner, but for larger values, a screened Coulomb form

f G)_m(,Ze2 1
el(ZTr T T2k b+ (Gl4n)?

TABLE 1. A COMPARISON OF THE VALUES OBTAINED (kV) FOR THE CRITICAL VOLTAGES OF LIGHT,
MEDIUM AND HEAVY ELEMENTS, AS CALCULATED FROM THE LANDAUER FORMULA FOR |R(s)|
AND ‘EXACT’ ‘MANY-BEAM’ MATRIX CALCULATIONS

(5.1)

293 K ' 93 K
s A Y [ A )
E((;n) E((;n) E‘gﬂ) E‘(:n)
element reflexion n w matrix Landauer w matrix  Landauer
Al (111) 2 474 450 " 550 520
4 0.820 3037 3023 0.355 3803 3773
6 4475 4493 9104 9076
Cu (200) 2 { 687 644 802 745
4 0.530 4171 4135 0.210 5215 5141
6 7385 7378 10230 10197
Mo (110) 2 74 51 93 68
4 0.255 2107 2076 0.105 2294 2256
6 5082 5056J 5910 5866
Au (200) 2 101 76 - 164 131
4 1752 1739 2322 2286
5 0.590 1638 1651 0.200 — _
5 3698 3656 —_ —
6 1380 1373 5900 - 5834

was fitted to join continuously at the largest tabulated value of G/4rn. We also solved a truncated
set of ‘many-beam’ equations (2.10) at the appropriate Bragg position for several values of y near
the semiclassical estimate and used the abrupt change in parity of the eigenvectors {6 (K§)} to
obtain voltages above and below E®. Linear interpolation from these voltages gave an ‘exact’
E®, the accuracy of which was checked by increasing the size of the array of many-beam equa-
tions and repeating the process. Usually a 17 x 17 or 16 x 16 array of equations was sufficient to
give E® to an accuracy of 1kV or better.

At most only the first six or seven Bloch waves contribute to the diffracted beams used in
electron microscopy, so the calculations were restricted to these. Table 1 shows the results for
elements of low, medium and high atomic number. All the systematic potentials corresponding
to the results given in table 1 are similar to the potential sketched in figure 1 and degeneracies of
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508 B.F.BUXTON AND M. V.BERRY

the same pairs of Bloch waves are possible in each case. However, only Au (200) exhibits a
degeneracy of waves (5) and (6) at an odd Bragg position, and it has two such degeneracies at
293 K, but none at 93 K! One of these degeneracies occurs at a high voltage when s is small
compared to K2 and the other at the lower voltage when s¢ is much larger. Au (111) has a similar
pair of degeneracies, but this behaviour is not restricted to heavy elements since Al (200) behaves
similarly.

TABLE 2. SOME GRITICAL VOLTAGES (kV) oF capmium (a) AT 293 K AnD (4) AT 86 K,
AND OF LEAD (a) AT 293 K anD (b) aT 93 K

(a) (b)

A

r B r R}
Ec(;n) Ec(:'n) Ein) E((:n)
element reflexion n w matrix  Landauer w matrix Landauer

Cd (0002) 3) ( 25 22 — —
3 574 545 — —

4 35 35 1405 1385
5 2.610 0.1 ‘0.62 0.800 — —
5 1251 1243 — —

6 1312 1306 2123 2140
6 2926 2907 — —
Pb (111) 3 [ 99 96 [ — —
3 521 490 e —

4 129 129 1292 1279

5 90 91 1671 1693

5 2.450 1676 1672 0.805 2516 2468

6 9 9 1260 1270
6 1667 1661 - —
6 3561 3535 — —

Pb (200) 2 20 5) ( 159 128
3 218 216 —_ —
3 864 832 —_— —_

4 212 212 1781 1774

5 2.450 120 121 0.805 1946 1964

5 2012 2005 3688 3638

6 1948 1942 1780 1787
6, 4630 4607 — —

Elements with larger values of the Debye-Waller parameter I# exhibit a much greater variety
of degeneracies. Lead and cadmium have exceptionally large values of I# at room temperature,
although W is much smaller at low temperatures since these elements have small Debye tem-
peratures. Table 2 shows the degeneracies found amongst the first seven Bloch waves for some of
the simple potentials of these elements. It is notable that for Cd (0002) and Pb (111) no
degeneracy of Bloch waves (2) and (3) appears in the table. Even when the beam voltage is
reduced to zero, wave (2) remains odd, so the critical value of y, below which wave (2) would be
even, is less than unity and hence physically inaccessible. For Au (111) at 293 K, Bloch wave (2)
is similarly odd at y = 1. These potentials are all strong so that the lowest Bloch wave is deeply
bound within the potential well at the atomic planes, and the first resonance maximum of | 7(s) |
is above the second maximum of cos @ as in figure 3 (¢).

From tables 1 and 2 we see that our formulae can be used to provide rather accurate estimates
of the critical voltages, even though these depend quite sensitively on the detailed shape of Uy (x).
Indeed, as table 3 shows they are no less accurate when used to predict the critical voltages of
the more complicated (111) systematic potential of silicon. As discussed in § 4 (d), there is no
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degeneracy of Bloch waves (2) and (3) for this potential, and the first degeneracy at an even Bragg
position is between waves (6) and (7). For all the degeneracies we have studied, the values of vy
found from the semiclassical formulae have been accurate to within about 4 %, and frequently
to within 2 9, or better. Figure 13 shows that the formulae give more accurate results for the
larger values of se. This is because the W.K.B. approximation for the phase is an asymptotic
formula, valid for large actions; i.e. it is a good approximation for large s; in the same limit the
Landauer formula should accurately predict the zeros of R, since it has been shown that the
asymptotic form of the Landauer formula is proportional to the asymptotic form of |R| (see for
example, Berry & Mount 1972, Pokrovskii, Ulinich & Savvinykh 1958).

TaBLE 3. CriTicAL VOLTAGES (kV) OF siLicon (111) AT 293 K anp 93 K

(The atomic form factors for G = (111), (333), (444) and (555), and the Debye-Waller parameters,
were taken from the X-ray measurements of Aldred (1971). All other scattering factors were obtained in
the usual way from the table given by Doyle & Turner (1968).)

2903 K 93 K
C A hY C A N
E‘(:n) E‘(:n) Ec(;n) Egn)
element reflexion n w matrix  Landauer w matrix Landauer
Si (111) 3 1145 1109 1200 1160
5 0.4615 1594 1595 0.2274 1625 1625
6 5825 5794J 6279 6238
(o]
o’
4 __V
v
n
3l
S A
A}
X dae
& .
I 5 91—
=
=
v .o
¥ O
1 (e
A Yo
% v
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| % @ | B
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Ficure 13. The relative accuracy of the critical voltages predicted by the semiclassical formulae, plotted against
s, at 293 K (solid symbols) and at 93 K (open symbols), according to the scheme: o, Pb (200); mu, Cu (200);
a, Al (111); v, Mo (110); &, Si (111).

Finally, we note that it was also possible to inspect the eigenvectors of the ‘many-beam’ calcula-
tions to obtain the orientations at which [5¢®9(KP)]? were large. These orientations are shown
plotted against ay/(sc) [2r, the prediction of equation (4.7), in figure 14. For the examples studied

here, it turned out that Jse < KB < 5o+ 2n/a. (5.2)

34 Vol. 282. A.
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510 B.F. BUXTON AND M. V. BERRY

The lower bound is easily understood: we deduced (4.7) by letting x.— 0 in (4.6) but the fact
that — U(x) > 0 implies that we should have /sc < KB. The upper bound in (5.2) shows that
this extremely crude estimate is not too bad.

ayJs.|2n

aK®[2n

FiGure 14. a/s[2r is plotted against the orientations aKy[2n described in the text; the solid symbols refer to
calculations at 293 K, and the open symbols to calculations at 93 K, as follows: e, Pb (111); m, Au (200);
A, Al (111); v, Mo (110); &, Si (111).

(a) Higher order degeneracies

In tables 1 and 2 there are a number of critical voltages of the higher Bloch waves of gold,
cadmium and lead which occur at 293 K but do not exist at 93 K. By repeating the calculations
based on the semiclassical formulae for successively smaller values of the Debye-Waller para-
meter ¥, the variation of these critical voltages with temperature was followed (figure 15). We
see that, as discussed in §4 (d), a pair of critical voltages can indeed approach, coalesce and
disappear as the temperature is reduced. However, it is easy to go further and show, by extending
the methods used in § 3 to account for parameters other than 7, that as we vary the Debye-Waller
parameter W the critical voltage moves along a trajectory y.(W), determined by

19ye _ U (W)[1eo(W) = Usg (W) [1oo(W)

7o = T U W) Tool W) = oo W) Do () * (5:3)
where UY (W) = fjadx%/ﬂﬁ(x), ctc. (5.4)

The curves shown in figure 15 can be explained in terms of the smooth variation of the expres-
sions in the numerator and denominator of equation (5.3). In particular, when the denominator
is zero, Oyc[OW is infinite, as for example at I & 0.60 for Bloch waves (5) and (6) of Pb (200)
(figure 15). At this point, there is a higher order degeneracy (see § 3) at which the Bloch waves
degenerate but do not interchange their parities as 7y is varied through vyc. In this way, we can pass
smoothly from a region where there are two critical voltages to a region where there are none,
since whenever we cross the critical trajectory the parities of the Bloch waves are interchanged.
It should be realized, however, that the higher order degeneracy can occur whenever we vary
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v and W along a tangent to the trajectory. This is easy to visualize from a plot of the surfaces of
#? = 1in the s, v, W space. For the example of Bloch waves (5) and (6) of Pb (200), the two
relevant surfaces are sketched in figure 16. Degeneracies occur whenever these surfaces cross,
i.e. around the edge of the ‘pocket’.

As yet none of these higher order degeneracies has been observed; indeed even the degeneracy
of Bloch waves (3) and (4) for Pb (200), which occurs twice for voltages below 1000kV, has not
been observed, although Jones and Tapetado (1973) have observed a degeneracy of waves (3)
and (4) for Cd (0002) at room temperature near 574kV.

A
2N

y
LY

<
5
NI
OH
43}
e
Q) 4
g
=w
- )
5z 3
59 >
e p=
085 =
O(IJ
=Z 2
To
oy
1
0
055 085 1.25 165 205 245

Ficure 15. Some of the critical voltages of Pb (200) are plotted as functions of the Debye-Waller parameter W
E® —.—. — E®, 3 O, eeeee . These critical voltages were calculated from the semiclassical formulae.
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Ficure 16. A sketch of the surfaces of u(s, y, W) = —1 for Bloch waves (5) and (6) of Pb (200). The surface
labelled E is associated with a symmetric solution of the Schrédinger equation and that labelled O with an
antisymmetric solution.
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512 B.F. BUXTON AND M. V. BERRY
We also estimated the lowest temperatures at which these trajectories exist by using a Debye
model, for which 2
W= ﬂﬁ/_T)Jrl], (5.5)
Mkg®O| O|T 4

where ¢ is the Debye function (see for instance the International Tables for X-ray Crystallo-
graphy). Table 4 lists some of these temperatures, calculated not only from the semiclassical
predictions of £, but also from the exact ‘many-beam’ critical voltages. The close agreement
of these results shows again how accurate the semiclassical formulae are. In fact, we also calcu-
lated the critical voltages as a function of W by the ‘many-beam’ method, using equation (3.9)
to calculate 0/0y(se(0) —s0(0)) and Newton’s famous algorithm to speed up the computations.
Theresults given in figure 17 show that as usual the predictions of the semiclassical formulae were
in good agreement with the exact calculations.

TABLE 4. A COMPARISON OF THE MINIMUM VALUES OF /W AS OBTAINED FROM THE
SEMICLASSICAL FORMULAE, AND FROM ‘MANY-BEAM’ CALCULATIONS

(The temperature 7,

"ain corresponding to the latter is given in the last column.)

Wmin
o A Al

element reflexion (2] n Landauer ‘many-beam’ T, /K
Au (200) 168.5 5 0.311 0.305 143
Pb (111) 82.0 3 1.713 1.66 200
5 0.715 0.703 82

6 1.603 1.59 192.9
Pb (200) 82.0 3 1.535 1.49 180
5 0.602 0.558 65
6 1.415 1.41 169
Cd (0002) 107.4 3 1.259 1.23 140
6 1.797 1.79 201

6. RECONSTRUCTION OF THE POTENTIAL

The sensitivity of critical voltages to the form of the potential U(x) was first used to determine
the lowest Fourier coefficient Uy, (Watanabe et al. 1968) and has more recently been used to
determine the atomic form factors fei(G/4rn) and Debye temperatures (see, for example, Thomas
et al. 1973; Shirley et al. 1975). The basis of these methods is the use of calculated values of the
form factors for free atoms (e.g. those of Doyle & Turner 1968) as a good approximation to the
form factors of atoms bound in a crystal for the larger values of (G/4n). We, however, shall use
the simple analytic forms of our semiclassical formulae to devise an inversion technique to obtain
U(x) directly from the critical voltages £ (Buxton & Berry 1973; Berry et al. 1973).

We introduce the new variable

w0 = 22 [ s, - O (6.)
equation (4.14) may then be written in the form:
[T awpuwysinng = o, (6.2
_n Oy(-ap) __,d . (dx
where R e )y S 2 o (6.8)
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This last equation can be integrated to obtain exact formulae giving U,(x) parametrically in
terms of f, (), namely

) = o[y exp -3 awron| | (1-e | [Lavnn)), o
el avsr)|

[Tayresp (=3[ awrrton)

and
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Ficure 17. A comparison of pairs of critical voltages as calculated from the semiclassical formulae (——) and
‘many beam’ equations (------ ). (a) E&®—E®Y for Pb (200); (b) ES®—ESV for Au (200).

Thus if we knew f,, () at the value of 5, appropriate to the degeneracy of Bloch waves nand n+ 1
we could calculate Uy(x). We shall approximate f,,(¥) by truncating its Fourier expansion; this
may be written as

Fall) = 3 Aupsin (m) (6.6)

since f,, () is an odd function. At the critical voltage, 4, vanishes, but if we are to truncate the
series we need to know that the neglected coefficients are small. It turns out that since the potential
U,(x) is an analytic function over the entire finite x plane, the only singularities of f,,(¥) in the
finite 3 plane are simple poles due to the complex classical turning points #;, at which s, — Up(#;)
iszero. f,, () is, therefore, analytic in a strip about the real ¢ axis out to the nearest turning points,
for which 2y
my| =y, = 22

Im f:idx\/[so— U1l (6.7)
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The Fourier series (6.6) converges uniformly to f,, () in this strip, so that, as shown by evaluating
the coefficients 4,,, by contour integration for large m (see, for example, Berry & Mount 1972),

the 4, decay exponentially, i.e.
A ~ e—m¥i (68)

M—>0

nm

and we may hope that a truncation of (6.6) would be successful.
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Ficure 18. A comparison of f,(¢) as calculated from equation (6.3) for Pb (200) at 293 K for
5o = 3.022 A-2 (—-) with 0.8502 sin tfr (~=e=n- ).

(a) The reconstruction of simple monotonic potentials

For these potentials the critical voltage most frequently measured corresponds to a degeneracy
of Bloch waves (2) and (3) so that 4,, vanishes. In this case, the function f,(y) is often well
approximated by the first term A,, sin y of the Fourier series (6.6), as shown in figure 18. With
this simple approximation, the potential given by equations (6.4) and (6.5) is determined by only
the two quantities ¥ and 4,,; and decreases from 0 to a, provided that Y™ and 4,,, are both
positive. However, to determine 4,, we need more information than critical voltages alone can
provide. The critical angle 6. introduced by Berry (1971) immediately suggests itself (Berry et al.
1973; Buxton & Berry 1973) since it is directly related to the depth of the potential, i.e.

00 = 2= (= U(8) s (6.9)

For the potentials considered here this is just (1/k,)y/(—U(}a)), and we then find that 4, is
uniquely determined from _
@y Uy(39)

= (6.10)

nl

= —2m23(34,,,) sinh 4

where I is the modified Bessel function of order zero.
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This reconstruction scheme was tested by using the values of y{™ obtained from the ‘many-
beam’ computations and the value of Uy(}a) obtained by summing the Fourier series (2.3).
Twelve potentials reconstructed in this way are shown in figure 19 a—f and figure 20 a—f. The
solid lines are the initial potentials obtained from (2.3), while the dashed line is the potential
reconstructed from y® and U,(}a). Where these are indistinguishable the latter is omitted, and,
for Au (200) and Pb (200) at 93K, a potential reconstructed from U,(}a) and E@ is also included
asa c—e—e— ~line. In terms of the Fourier coefficients Uy, these reconstructions are accurate
to within a few percent. The examples shown indicate that this reconstruction is in general less
accurate at low temperatures.

To understand this, and why the method does not work well for Al (111) or Mo (110) at either
temperature, we must consider the terms 4,,, sin (my) which were neglected. Defining

m2ym mn 2
'y = nz = %a — s
2 fo ' [so — Ty(x)] (6.11)
and $ = VS,
it follows that | Apm(s0)| = (4[m) |R(s,7)| (6.12)

so that the term 4,,, sin my in (6.6) can be neglected only if |R(s, y)| is small. If m/n is greater
than unity, |R(s, y)| will in general be small, and there will be two eigenvalues s,, and s,,., near s,
which are separated by a small band gap given approximately by

ASp = Spya—Sm = 2|R(s, |/a¢ $Y), (6.13)

For large s, i.e. large m, this gap and |R(s,y)| will indeed be very small (recall equation (6.8)),
but even for m = 3, states (3) and (4) are very close, being solutions of (2.26) in the ‘above barrier’
region where | 7| ~ 1. Moreover, at 293K, s, is larger than the corresponding s, at a low tem-
perature so that the gap As,, lying nearer to s, = 0, is larger at the lower temperature and the
reconstruction is less accurate. This is confirmed by detailed calculations relating As,, to f,,(¥)
via equations (6.3), (6.12) and (6.13). If f,(¥) is approximated by 4,,sin ¢ we find that

| Agg| & 5= A5 IIZ((A 21/)2) o (6.14)
so that | Ay is easily estimated as shown in table 5. For each element, |4y is larger at 93 K than
at 293K, and the values for Al(111) and Mo (110) are abnormally large, explaining the
inaccuracy of our reconstruction scheme in these cases. We therefore extended the scheme to
include the term Aygsin 3¢ in the approximation for f,(¥) and used As,, as well as U,(}a), to
determine the coefficients 4y and A,;. The reconstructions of the Al(111) and Mo (110)
potentials were greatly improved as shown in figure 21 4-d. Since equation (6.12) only gives us
the modulus |4,4|, we need a separate argument to show that 4,4 is positive: for small 5,, inversion
of (6.6) shows that A,; > 0, and the fact that there is no degeneracy of Bloch waves (3) and (4)
for these potentials means that it is always positive.

We can also see why we obtained the reasonable reconstructions from E® shown in figure 19
and figure 20 by neglecting 4,, and 4,3 when only 4,4, was known to be zero! Fortuitously,
v® x4y for these potentials of Au and Pb, so that at the 5, corresponding to Yy, 4,, is almost
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Ficure 19. Reconstructed potentials (A-2) at 293 K.
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Eé Ficure 20. Reconstructed potentials (A-2) at 93 K, (a)-(¢), and at 86 K ().
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TABLE 5. AT THE APPROPRIATE ENERGY E = myc*(§—1) +2E® (cf. (6.11)), THE SEPARATION
AS; OF BRANCHES 3 AND 4 OF THE DISPERSION SURFACE AT AN ODD BRAGG ORIENTATION WAS
OBTAINED FROM A MATRIX SOLUTION OF THE ‘MANY-BEAM’ EQUATIONS. THE APPROXIMATE
VALUES OF |Ay3| OBTAINED AS DISCUSSED IN THE TEXT ARE ALSO SHOWN

293 K 93 K
element - - N ‘ - ~
(reflexion) E AS, | Ags] E AS, [Ags)
Al (111) 1705 0.659607 0.132 1876 1.015332 0.205
Cu (200) 2185 0.256354 0.031 2443 0.836818 0.105
Mo (110) 804 0.920186 0.174 847 1.149558 0.221
Au (200) 866 0.522053 0.083 1008 1.198053 0.197
Pb (200) 684 0.126028 0.028 997 0.380179 0.090
xfa >
0 0.2 04 0
T T ]
4 (a) Al(111) at 293 K 4 () Al(111) at 93 K
—g —g
4 B -
=®
= —8r - —gk
0 0.2 04 0 0.2 04
‘r\ I
—8l- - —gl- —
L (c) Mo (110) at 293 K L (d) Mo (110) at 93 K
=16 —16=
—24 - — 24— ]

Ficure 21. Reconstructions of the Al (111) and Mo (110) potentials (A-2) by using
So(¥) > Ay sinyfr+ Ayesin 3y,
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zero, and the simple reconstruction works. This conclusion is strengthened by the fact that
equation (6.10) for 4,, contains only v /n2.

Finally, we note that although y® can be measured very accurately, the accuracy with which
0. can be measured, either from bend contours or from the diffraction pattern has yet to be
determined (Berry 1971; Richards & Steeds 1971; Berry ef al. 1973). On the other hand, As,, is
inversely proportional to the extinction distance £, .1 (see, for example, Hirsch et al. 1965;
Howie 1969) and should be easy to measure from the thickness fringes of a bent wedge shaped
specimen (Richards 1973; Steeds et al. 1973).

(b) Reconstruction from a ‘pair’ of critical voltages

We saw in § 5 (i) that for some of these simple potentials two of the higher Bloch waves could
degenerate at two different voltages. Obviously, the simplest reconstruction obtained by approxi-
mating f,, (¥) by 4, sin ¢ will not be suitable for these critical voltages, unless as just mentioned

xla -

(a) Cd (0002) (b) Cd(1120)

02 04 0 0.2 04

{¢) Pb(111) {d) Pb (200)

Ficure 22. Reconstruction of four potentials (A—2%) of cadmium and lead at 293 K from ‘pairs’ of values of E®
(each reconstruction simultaneously generates two potentials shown as ------ and —+—:— ).

35-2
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4,5 fortuitously vanishes. The high values of these critical voltages (see table 2) indicate that the
degeneracy of Bloch waves (3) and (4) is likely to be of most importance, so we approximate

f3(¥) = Agysinfr + Agpsin 29, (6.15)

with different values of the coefficients 4, at each critical voltage.

Fitting each of the potentials generated from the two functions f,(¢) to have the depth Uy(}a)
at Y = 7 gives two equations similar to (6.10). To obtain two more equations which will com-
pletely determine the four coefficients we use the fact that it is the same potential Uy(x) which
gives rise to these degeneracies, and insist that the reconstructed potentials have the same
curvatures at ¥ = 0 and at x = }a. This gives a pair of linear equations which can be solved for
the 4, coefficients, a fact which greatly facilitates the numerical solution of our four (nonlinear)
equations. The results are shown in figure 22 for four potentials at 293 K. The values of E®) used
were taken from the ‘many-beam’ results given in table 2, except for Cd (1120) for which
EP = 2054kV and 2908kV at 293 K. Since two terms were retained in the approximation (6.15),
these reconstructions are, on the whole, more accurate than those shown in figure 19 and
figure 20, the Fourier coefficients U, , being reproduced to within about 1%,.

(¢) The (111) potential of silicon

Before dealing with this more complicated case, let us discuss a few qualitative features of the
function f, (). In particular it is easily shown that

£ = 035000

and that at such points of zero force we have

= U{)(x) =0, (6.16)

U = g st [ aw exp[ =3 [ afuon| | exe{ [T awrwn). 007

The shape of the potential is therefore largely determined by the zeros of f,,(¥) and its slope at
these points. In the case of the potentials previously dealt with which were monotonic for x in
[0, 3a], the higher terms in the Fourier series (6.6) all had small coefficients to avoid introducing
spurious stationary points into Uy(x). In the case of the (111) potential of silicon however it is
essential that some of these coefficients are large so that a minimum near x = 34/8 (see figure 12)
can be generated. We therefore retained two terms in (6.6) and approximated f3(¢) asin (6.15)
for this reconstruction, using the critical voltages E® given in table 3.

However, there is a difficulty here in that we cannot use equations (6.12) and (6.13) to obtain
Aj,, since the latter is only valid if the band gap is small, and if s,,,; and s,, are positive. For
silicon (111), it turns out that at an even Bragg position and at the appropriate beam voltage
fixed by (6.11), s, is negative, s; positive and the gap As, very large so that the previous scheme
breaks down. We therefore carried out a cruder reconstruction, assuming that the minimum in
the potential occurs at ¥ = 3a/8 (this is the position of the atomic planes as shown in figure 12)
and obtained the encouraging results shown in figure 23. This procedure can then be improved
as usual by including information from the higher band gaps As,, etc. Indeed, we included terms
up to Ayssin 5y in the approximation for f3(1) and determined the four unknown coefficients
from the position and depth of the minimum in the potential and As, and As;, to obtain the
accurate reconstruction shown in figure 24.
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Ficure 23. Reconstructions of the Si (111) potential (A-?) by using approximation (6.15) for f3(1),
(a) at 293 K, (b) at 93 K.
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(d) The three dimensional potential Uy(r)

Having shown how we can directly reconstruct the systematic potentials Jj(x) in real space in
terms of a few simple parameters, let us now consider the full three dimensional potential Uy(r),
which can be expressed as a sum over the systematic potentials:

Uy(r) = U3 = S {Ty(r-5) — (Ty(r-3))}. (6.18)

3 represents the sum over all the systematic directions denoted by the unit vectors &, and the
E

mean potentials U and (Ty(r-%)) are included because a different choice of the zero of energy
was made for each systematic potential (see § 2 (2)). The infinite sum (6.18) can be truncated by
neglecting all systematic potentials for which the lattice plane spacing a is less than some detail
size |Ar|, and then reduced by using the crystal symmetry of Uy(r). In general though there will
be many weak potentials in the sum (6.18) which cannot be reconstructed in the way we have
just described because the critical voltages are inaccessibly high. However, these potentials will
only involve high order Fourier coefficients and can therefore be obtained quite accurately from
the free atom calculations of Doyle & Turner (1968) (say) if we include a Debye-Waller factor
to allow for the thermal vibrations of the atoms. In this way, the reconstruction of a few of the
strongest systematic potentials should allow us to infer Uy(r), without recourse to any assumptions
about overlapping spherically symmetric potentials for these, the largest contributions.

We emphasize here that Uy(r) is an optical potential and therefore includes a very small contri-
bution due to virtual inelastic processes (Yoshioka 1957; Dederichs 1972) as well as a ‘smearing
out’ due to the thermal motions of the atoms in the crystal. However, to a very good approxima-
tion, V2U,(r) is proportional to the charge density in the crystal averaged over these thermal
vibrations. Hence, we obtain information about the charge density of the idealized static crystal
in the important interstitial region where it differs little from the thermally averaged charge
density if this is spatially slowly varying.

7. CONCLUSIONS

These fall naturally into three groups, the first drawn from the exact treatment of §§ 2 and 3,
the second concerning the semiclassical approximations used in §§ 4 and 5, and the third relating
to the reconstruction scheme of § 6.

(a) The exact formulation

The most important fact is that the degeneracies are accidental. Only the novel feature of the
scaling of the potential with the relativistic factor y makes the critical voltage effect occur, and
even this only for symmetric potentials (see the appendix). As is well known, the degeneracies
occur at the Bragg positions where for a symmetric potential non-degenerate Bloch waves can be
assigned a definite parity. We showed how the ordering of the parities of the Bloch waves with
increasing eigenenergy §; depended on the location of the zeros of the reflexion coefficient R(s),
and that at a degeneracy these parities could be interchanged. Indeed, this exchange of parities
is essential, because no degeneracies occur for the bound (s; < 0) states, and for simple monotonic
potentials they alternate in parity as we look at states of progressively higher s5;. The parities of the
states with positive s; however usually differ from this strictly alternating series, and without a
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degeneracy, and the interchange of parities, these states would not be able to pass smoothly into
the bound region as the potential is deepened by an increase in the relativistic factor y. We also
saw that, where R(s) had a higher order zero, a higher order degeneracy could occur without
a change in the symmetries of the Bloch states.

In § 3, the energy bandswere found to be hyperbolic near a degeneracy, and tobecome aline pair
and cross at the critical .. Also, near y. we saw that the Bloch waves themselves depend strongly
on the orientation, changing from a travelling wave form far from the Bragg position to a standing
wave form at the Bragg position. It was shown that this gave rise to a characteristic rapid change
in the Fourier coefficient of the Bloch waves, and to lead to a few complications when absorption
effects are included by perturbation theory. We then showed analytically how the degeneracy
and the rapid changes in the Fourier coefficients account for the well-known °‘critical voltage
effects’ visible in the diffracted waves and the Kikuchi pattern.

(b) The semiclassical approximations

In § 4 we used W.K.B. approximations to show that the Bragg orientation K could be chosen
so that the excitations of the degenerate Bloch waves were comparable and large, and in § 4 (a)
that they would often also have comparable and small absorption coefficients. In this way, it
became clear how the contributions from these Bloch waves could dominate some of the diffracted
beam intensities and the Kikuchi pattern and so lead to observable effects at the degeneracy. We
found, however, that a W.K.B. formula for the transmission coefficient 7'(s) could not describe
the degeneracies and used instead a formula for R(s), due to Landauer. This led to simple equations
(4.13) and (4.14) for the critical s; and 7., which we used in §§ 4 (¢) and (4) to understand how
ve varied with temperature and which Bloch waves could degenerate for a given form of potential.

In §5, it was shown by comparison with exact ‘many-beam’ calculations that numerical
solutions of these same equations gave accurate estimates of the critical voltages. Moreover, they
even predicted accurately the occurrence of higher order degeneracies in lead, cadmium and gold.
At the end of this section, we emphasized that the higher order degeneracies, which only occurred
by chance as vy alone was varied could be made to occur for many values of y by varying y and
the temperature simultaneously.

(¢) The reconstruction scheme

Finally (§6), we used the simplicity and accuracy of the semiclassical formulae to derive an
inversion technique. Initially, this depended only on a measurement of critical voltage for
a degeneracy of Bloch waves (2) and (3), and on a measurement of a critical angle. However, it
was systematically improved by the addition of information derived from extinction lengths at
Bragg positions, and then extended to include other critical voltages. This scheme gives the
crystal potential directly in real space without using additional calculated information or making
any assumptions about overlapping spherical atoms. However, it is less accurate than the
conventional determination of atomic scattering factors (see, for example, Thomas et al. 1973).

Nevertheless, as the example with the more complicated potential of Si(111) systematics
showed, its strength lies in its simplicity and the direct way itis related to the shape (i.e. number of
minima) of the potential. This could mean that a fairly rough reconstruction would be useful
when attempting to analyse an unknown structure.
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APPENDIX
Critical voltages for an asymmetric potential

The question of interest here is whether a variation of the relativistic factor vy offers enough
scope to ensure that a degeneracy of a pair of Bloch waves will occur. We shall show that for
a general asymmetric potential it does not, i.e. even as vy is varied degeneracies will occur only by
chance. For such a potential the reflexion coefficients Ry, and Ry of waves 7, and 7y incident
from the left and right respectively (as in figure 1) are not the same, but using the properties of
the Wronskian (see, for example, Messiah 1962, vol. 1) it is easy to show that we can write

T=|T|e¥,
R, = ] R] eitL+d), (A1)
Ry = |R| eitr+d),

where v, +vg = (2p+1)m, p=0,4+1,+2,... (A2)

and hence that the band structure equations (2.12) and (2.15) are the same, when expressed in
terms of these scattered waves, as for a symmetric potential.
Thus for a degeneracy we must have |R| = 0, i.e.

ReR=ImR =0 (A 3)
and also po+8 = nm. ‘(A4)

With only two variables s and 7y, we cannot satisfy all three of the conditions above, except by
chance. The best we can hope for is to minimize |R|, or to reduce the separation of two of the
energy bands to a minimum. Perhaps, by varying the temperature of the specimen, this minimum
could be reduced to zero and a critical voltage for an asymmetric potential obtained in a similar
way to the higher order degeneracies of symmetric potentials.

For a symmetric potential the essential point is that Ry, = Ry, so that

v, =vg = (2p+1)4m, (A5)
and the real and imaginary parts of R are no longer independent functions, since
ReR = ImRtan (ay/[s—yUy(}a)]), (A 6)

and we only have two conditions in (A 3) and (A 4) which must be satisfied at a degeneracy.
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